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Basic concepts

Real-valued random variables

Let (Ω,Σ,P) be a probability space. In particular, P(Ω) = 1.

A real-valued random variable is a measurable function
X : Ω→ R. That is, for any open set U ⊆ R, one has X−1(U) ∈ Σ.
The probability distribution (or law) of X is the probability
measure PX on R given by PX (S) = P(X ∈ S) for S ∈ B(R).

I The law PX is often the most important information about X .

The distribution function FX of X is given by FX (λ) = P(X ≤ λ)
for λ ∈ R.

I FX is non-decreasing, continuous from the right, FX (−∞) = 0, and
FX (∞) = 1.

I The probability distribution is recovered as PX = dFX .
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Basic concepts

Continuous versus discrete

A real-valued random variable X is continuous if FX is continuous.
A real-valued random variable X has a density if dFX � dλ. The
density is given as fx = dFX/dλ. Then P(X ∈ S) =

∫
S fX (λ) dλ.

A real-valued random variable is discrete if dFX is purely discrete.

Examples
1 Continuous distributions

I Normal (or Gaussian) distribution N(µ, σ2), µ ∈ R, σ > 0:

f (λ) = 1√
2πσ

e−
(λ−µ)2

2σ2 .

2 Discrete distributions

I Binomial distribution B(n,p), n ∈ N, p ∈ (0,1):
P(X = k) =

(n
k

)
pk (1− p)n−k for k = 0,1, . . . ,n.

I Bernoulli distribution Bernoulli(p) = B(1,p).
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Basic concepts

Some characteristica

We have the following characteristic quantities if defined:
The expectation (or expected value) of X is
EX =

∫
Ω X dP =

∫∞
−∞ λdFX (λ).

The variance of X is VX = E|X − EX |2 = E
[
X 2]− (EX )2.

The characteristic function of X is ϕX (t) = E
[
eitX ], t ∈ R.

Examples
1 Continuous distributions

I N(µ, σ2): EX = µ, VX = σ2, ϕX (t) = eitµ− 1
2 σ2t2

.
2 Discrete distributions

I B(n,p): EX = np, VX = np(1− p), ϕX (t) = (1− p + peit )n.
I Bernoulli(p): EX = p, VX = p(1− p), ϕX (t) = 1− p + peit .
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Basic concepts

Elementary inequalities

1 Markov’s inequality Let X be non-negative. Then, for any a > 0,
P(X ≥ a) ≤ EX

a .

Proof.
Let A = {X ≥ a}. Then P(A) = E(χA) ≤ 1

a EX .

2 Generalization: Let X be a random variable, ϕ be non-decreasing
and non-negative on [0,∞), and a ≥ 0 with ϕ(a) > 0. Then
P(|X | ≥ a) ≤ Eϕ(|X |)

ϕ(a) .

3 Chebyshev’s inequality Let X be square-integrable. Then, for any
a > 0, P(|X − EX | ≥ a) ≤ VX

a2 .

Proof.
Apply Markov’s inequality to |X − EX |2 at height a2.
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Independence

Independent random variables

A sequence {Aj}∞j=1 of events in Σ is said to be independent if, for

any finite subset J ⊂ N, P
(⋂

j∈J Aj

)
=
∏

j∈J P(Aj).

A sequence {Σj}∞j=1 of σ-subalgebras of Σ is said to be
independent if, whenever Aj ∈ Σj for all j , then the sequence
{Aj}∞j=1 of events is independent.

A sequence {Xj}∞j=1 of random variables is said to be independent
if the sequence {σ(Xj)}∞j=1 of σ-subalgebras of Σ is independent.

Recall that, for a random variable X , σ(X ) = {X−1(S) | S ∈ B(R)} is smallest
σ-subalgebra of Σ with respect to which X is measurable.
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Independence

An equivalent characterization

Proposition
If X , Y , and XY are integrable and X and Y are independent, then
E[XY ] = EX · EY.

Proof.
Prove this first when X and Y are simple (in a measure-theoretic sense), then
approximate.

Proposition

X and Y are independent if and only if Eei(tX+sY ) = EeitX · EeisY .
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Independence

Modes of convergence

Let {Xj}∞j=1 be a sequence of random variables and X be another
random variable.

1 Xj converges in distribution (or weakly, or in law) to X if
limj→∞ FXj (λ) = FX (λ) for all continuity points λ of FX .

2 Xj converges in probability to X if, for any ε > 0,
limj→∞ P(|X − Xj | > ε) = 0.

3 Xj converges almost surely (or strongly) to X if
P(limj→∞ Xj = X ) = 1.

Note that Xj
a.s.−−→ X =⇒ Xj

p−→ X =⇒ Xj
d−→ X .

Lemma

Suppose that Xj
p−→ X. Then there exists a subsequence {jk}k∈N of N

such that Xjk
a.s.−−→ X.
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Independence

Lemma (Borel-Cantelli)
Let {Aj}∞j=1 a sequence of events. Then

∞∑
j=1

P(Aj) <∞ =⇒ P(Aj occurs infinitely often) = 0.

Suppose in addition that the Aj are independent. Then

∞∑
j=1

P(Aj) =∞ =⇒ P(Aj occurs infinitely often) = 1.

Proof (of the second part).

One has P
(⋂

n≤j≤N Ac
j

)
=
∏

n≤j≤N (1− P(Aj )) ≤
∏

n≤j≤N exp (−P(Aj )) =

exp
(
−
∑

n≤j≤N P(Aj )
)
→ 0 as N →∞. Hence, P

(⋃
j≥n Aj

)
= 1 for all n,

which finishes the argument.
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Independence

Law of large numbers

Theorem
Let {Xj}j≥1 be an i.i.d. sequence of integrable random variables and
SN =

∑N
j=1 Xj for N ≥ 1. Then:

1 (Weak form) SN/N
p−→ EX1,

2 (Strong form) SN/N
a.s.−−→ EX1.

Proof.
(Weak form if X1 is L2) We can assume EX1 = 0. Then

P(|SN | > εN) ≤ ε−2N−2E |SN |2

= ε−2N−2
(∑

1≤j≤N
EX 2

j + 2
∑

1≤j<k≤N
E[XjXk ]

)
= ε−2N−1EX 2

1 → 0 as N →∞.
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Independence

Central limit theorem (CLT)

Theorem
Let {Xj}j∈N be an i.i.d. sequence of L2 random variables with EX1 = µ,
VX1 = σ2, where σ > 0. Then, for all a < b,

lim
N→∞

P
(

a <
SN − Nµ√

Nσ
< b

)
=

1√
2πσ

∫ b

a
e−λ

2/(2σ2) dλ.

Proof We can assume that EX1 = 0, VX1 = 1.
It suffices to show that, for all φ ∈ S (R),

E
(

1
2π

∫ ∞
−∞

eiξSN/
√

N φ̂(ξ) dξ
)
→ 1√

2π

∫ ∞
−∞

e−λ
2/2φ(λ) dλ.

as N →∞, where φ̂(ξ) =
∫∞
−∞ e−iλξφ(λ) dλ.
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Independence

Continuation of the proof

By independence, we have EeiξSN/
√

N =
(
ϕX1(ξ/

√
N)
)N

.
Now use

eiξX1 = 1 + iξX1 −
ξ2

2
X 2

1 − ξ2X 2
1

∫ 1

0
(1− t)

(
eitξX1 − 1

)
dt ,

which implies, by taking expectations and using the dominated
convergence theorem,

EeiξSN/
√

N =

(
1− ξ2

2N
+ o(ξ2/N)

)N

→ e−ξ
2/2

as N →∞ uniformly in ξ. Therefore, E(. . . ) converges as N →∞ to

1
2π

∫ ∞
−∞

e−ξ
2/2φ̂(ξ) dξ =

1√
2π

∫ ∞
−∞

e−λ
2/2φ(λ) dλ. �
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Rademacher functions

Definition and first properties

For j ∈ N0, we define the j th Rademacher function to be

rj(t) = sgn sin(2jπt), 0 ≤ t ≤ 1.

Using the right-continuous representative, we have

r0(t) = 1, 0 ≤ t ≤ 1,

r1(t) = 1, 0 ≤ t < 1/2, r1(t) = −1, 1/2 ≤ t ≤ 1,

r2(t) = 1, 0 ≤ t < 1/4, r2(t) = −1, 1/4 ≤ t ≤ 1/2,

r2(t) = 1, 1/2 ≤ t < 3/4, r2(t) = −1, 3/4 ≤ t ≤ 1, etc.

Lemma
Given a sequence {ε}∞j=0 ⊂ {+1,−1},

λ1
(
{rj1 = ε1, . . . , rjn = εjn}

)
= 2−n.

In particular, the random variables r0, r1, r2 . . . are independent.
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Rademacher functions

The Walsh system

The Rademacher functions form an orthogonal system {rj}j∈N0 in
L2([0,1],dx). This system, however, is not complete.

A complete orthogonal system, into whom the Rademacher functions
embed, is given by the system {Wk}k∈N0 of Walsh functions defined as
follows: Let kj be the j th bit in the binary representation of k , starting
with k0 as the least significant bit. Then

Wk (t) =
∏

j

r kj
j (t).

In particular, rj = W2j .
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Rademacher functions

Khintchine’s inequality

Theorem
For 0 < p <∞, there are constants 0 < Ap < Bp <∞ such that, for
any {aj} ∈ `2,

Ap
∥∥{aj}

∥∥
`2
≤
∥∥∥∑∞

j=0
aj rj

∥∥∥
Lp
≤ Bp

∥∥{aj}
∥∥
`2
.

Proof.
We can assume that {aj} ⊂ R and that aj = 0 for all, but finitely many j ≥ 1.
Normalize ‖{aj}‖`2 = 1.
Let ρ > 0. Then∫ 1

0
eρ

∑
j aj rj (t) dt =

∏
j

∫ 1

0
eρaj rj (t) dt =

∏
j

eρaj + e−ρaj

2
≤
∏

j

eρ
2a2

j /2 = eρ
2/2,

where we have used the elementary inequality
(
ex + e−x) /2 ≤ ex2/2.
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Rademacher functions

Introduce F (t) =
∑

j aj rj (t). Then
∫ 1

0 eρ|F (t)| dt ≤
∫ 1

0 eρF (t) dt +
∫ 1

0 e−ρF (t) dt ≤ 2eρ
2/2.

Therefore, for α > 0,

eραλ1 ({|F | > α}) ≤
∫ 1

0
eρ|F (t)| dt ≤ 2eρ

2/2.

We obtain dF (α) ≤ 2eρ
2/2−ρα and, for ρ = α,

dF (α) ≤ 2e−α
2/2.

It follows that

‖F‖p
Lp = p

∫ ∞
0

αp−1dF (α) dα ≤ 2p
∫ ∞

0
αp−1e−α

2/2 dα

= 2p/2p
∫ ∞

0
βp/2−1e−β dβ = 2p/2p Γ(p/2).

This proves one of the inequalities with Bp =
√

2p1/pΓ(p/2)1/p. �

Remark
The same proof works when one takes i.i.d. random variables {εj}j≥1 with
ε1 ∼ 2 Bernoulli(1/2)− 1 (instead of {rj}).
The best constants Ap, Bp are known in case {aj} ⊂ R (Haagerup, 1982).
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