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Basic concepts

Real-valued random variables

Let (2, X, P) be a probability space. In particular, P(Q2) = 1.
@ A real-valued random variable is a measurable function
X: Q — R. That s, for any open set U C R, one has X~ 1(U) € %.
@ The probability distribution (or law) of X is the probability
measure Py on R given by Px(S) =P(X € S) for S € B(R).
> The law Py is often the most important information about X.
@ The distribution function Fx of X is given by Fx(\) = P(X < \)
for A € R.

> Fx is non-decreasing, continuous from the right, Fx(—oc) = 0, and
» The probability distribution is recovered as Py = dFx.
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Basic concepts

Continuous versus discrete

@ A real-valued random variable X is continuous if Fy is continuous.

@ A real-valued random variable X has a density if dFx < d\. The
density is given as fy = dFx/dA. Then P(X € S) = [ fx()) dA.

@ A real-valued random variable is discrete if dFy is purely discrete.

Examples

@ Continuous distributions
» Normal (or Gaussian) distribution N(u, 02), 1 € R, o > 0:

_ =
N = 7

e 7 .
@ Discrete distributions
» Binomial distribution B(n,p), ne N, p € (0,1):
P(X = k) = (J)pk(1 — p)"kfork =0,1,...,n.
» Bernoulli distribution Bernoulli(p) = B(1, p).
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Basic concepts

Some characteristica

We have the following characteristic quantities if defined:
@ The expectation (or expected value) of X is
EX = [o XdP = [0 AdFx(\).
@ The variance of X is VX = E|X — EX|? = E [X?] — (EX)2.
@ The characteristic function of X is px(t) = E [e], t € R.

Examples

@ Continuous distributions
> N(p,02): EX = p, VX = 02, px(t) = gitn—3 "t
@ Discrete distributions
> B(n,p): EX = np, VX = np(1 — p), ox(t)

— ( p+peit)n_
» Bernoulli(p): EX = p, VX = p(1 — p), px(t) =

— p+ pell.
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Basic concepts

Elementary inequalities

@ Markov’s inequality Let X be non-negative. Then, for any a > 0,
P(X > a) < EX.

Proof.
Let A= {X > a}. Then P(A) = E(xa) < 1 EX. O

@ Generalization: Let X be a random variable, © be non-decreasing

and non-negative on [0, o0), and a > 0 with ¢(a) > 0. Then
Ep(1X])
P(|X| > a) < OB
© Chebyshev’s inequality Let X be square-integrable. Then, for any
a>0,P(X - EX|>a) < %X

Proof.
Apply Markov’s inequality to | X — EX|? at height &°. O
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Independence

Independent random variables

® Asequence {A;}?, of events in X is said to be independent if, for
any finite subset J C N, P (ﬂjEJ Aj) = [1jes P(A)-
@ Asequence {¥;}*; of o-subalgebras of ¥ is said to be

independent if, whenever A; ¢ ¥ for all j, then the sequence
{Aj}2, of events is independent.

@ Asequence {X;}?, of random variables is said to be independent
if the sequence {o(X)) 724 of o-subalgebras of X is independent.

Recall that, for a random variable X, o(X) = {X~'(S) | S € B(R)} is smallest
o-subalgebra of X with respect to which X is measurable.
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Independence

An equivalent characterization

Proposition

IfX, Y, and XY are integrable and X and Y are independent, then
E[XY] =EX-EY.

Proof.
Prove this first when X and Y are simple (in a measure-theoretic sense), then

approximate. O

Proposition
X and Y are independent if and only if Eel(X+sY) — EelX . FeisY,
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Independence

Modes of convergence

Let {X;}72, be a sequence of random variables and X be another
random variable.

@ X; converges in distribution (or weakly, or in law) to X if
limj_,o0 Fx;(A) = Fx(A) for all continuity points A of Fx.

@ X; converges in probability to X if, for any e > 0,
im0 P(|X — Xj| > €) = 0.

© X; converges almost surely (or strongly) to X if
P(limjo Xj = X) = 1.

Note that X; 2% X — X, 2 x — X -4 X.

Lemma

Suppose that X; P X. Then there exists a subsequence {ji }ken Of N
such that X, 2% X.
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Independence

Lemma (Borel-Cantelli)
Let {A;}32, a sequence of events. Then

ZIP’ < oo = P(A occurs infinitely often) = 0.

Suppose in addition that the A; are independent. Then

> P(A) =00 = P(A occurs infinitely often) = 1.

Proof (of the second part).

One has P (Myejen A7) = Tagjen (1 = P(A)) < [Tpejcn oxp (~P(A) =
exp (— anSNP(A/)) — 0as N — oo. Hence, P (U]>nA) =1foralln,
which finishes the argument. O
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Law of large numbers

Theorem

Let {X;}j>1 be an i.i.d. sequence of integrable random variables and
Sy = Z/’L Xj for N > 1. Then:

@ (Weak form) Sy/N PoEX,
@ (Strong form) Sy/N 255 EX;.

Proof.

(Weak form if X is L?) We can assume EX; = 0. Then
P(|Sn| > eN) < e 2N~2E |Sy[?

_ 2p-2 (Z1§jSNE)(j.2 42 Z1Sj<kSN]E[)(ij]>

= ¢ 2N"EX2 50 asN —oco. [
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Central limit theorem (CLT)

Theorem

Let {Xj}jen be an i.i.d. sequence of L? random variables with EXy = p,
VX; = 02, where o > 0. Then, for all a < b,

. Sy — Nu > 1 /b —\2/(242
im Pla< =" _—"F <p) = e /@o%) g,
Ninoo ( v No vero Ja

Proof We can assume that EX; =0, VX; = 1.
It suffices to show that, for all ¢ € .(R),

E(;W e ) / 6=/2(1) dA

as N — oo, where ¢(¢) = [°2_e ¢g(\)dA
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Independence

Continuation of the proof

. N
By independence, we have EeiéSv/VN — (gox1 (§/W)) .
Now use

. 2 1 .
o —1+igky - S Xt - X2 [ (1) (6% 1)t
0

which implies, by taking expectations and using the dominated
convergence theorem,

2
Eel¢Sw/VN — <1 §N (gz/N)> e /2

as N — oo uniformly in £. Therefore, E(...) converges as N — oo to

o | e d = o= [~ e o =
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Rademacher functions

e Rademacher functions
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Rademacher functions

Definition and first properties
For j € Ny, we define the jth Rademacher function to be
ri(t) = sgnsin(2nt), 0<t<1.

Using the right-continuous representative, we have
nR(t)y=1, 0<t<1,

nt)=1, 0<t<1/2, n(t)=-1, 1/2<t<A1,
n()=1, 0<t<1/4, n(t)=-1, 1/4<t<1/2,
n()=1, 1/2<t<3/4, n()=-1, 3/4<t<1, etc.

Lemma
Given a sequence {e}?2y C {+1,—1},

A1 ({I’]1 =€1,..., 0, = ejn}) =2""
In particular, the random variables ry, 1, 1> . .. are independent.
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The Walsh system

The Rademacher functions form an orthogonal system {r;} ey, in
L2([0, 1], dx). This system, however, is not complete.

A complete orthogonal system, into whom the Rademacher functions
embed, is given by the system { W} ke, of Walsh functions defined as

follows: Let k; be the jth bit in the binary representation of k, starting
with kg as the least significant bit. Then

Wi(t) = [ (t)-
)

In particular, r; = W,;.
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Khintchine’s inequality

Theorem

For0 < p < oo, there are constants 0 < A, < Bp < oo such that, for
any {a;} € (2,

Ao @l < |20 am| , < Bo €@ le-

Proof.

We can assume that {g;} C R and that a; = 0 for all, but finitely many j > 1.
Normalize [|{a;}],. = 1.
Let p > 0. Then

1 1 pa; pa;
ar . e /+e / 242 /2 2/2
e’ i 310 dt = / et e’ /% =/
J 1), - =11

) J

where we have used the elementary inequality (e* +e*) /2 < e’/2, O
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Rademacher functions

Introduce F (1) = 3, ar(1). Then [ e?IFOldt < [1erF O dt + [ e=Fdt < 2e°/2,
Therefore, for o > 0,

1
e\ ({|F| > a}) g/ e?IF0l gt < D" /2.
0

We obtain de() < 2¢#*/2* and, for p = a,
dr(a) < 26772,
It follows that
IFI = p [ o tar@ da <20 [ ol 2 da
0 0
= 2.0/2p/ 6P/271efﬁ dﬁ — 2p/2p r(p/2)
0
This proves one of the inequalities with B, = v2p'/*T(p/2)'/?. O

Remark

@ The same proof works when one takes i.i.d. random variables {¢;};>1 with
€1 ~ 2Bernoulli(1/2) — 1 (instead of {r;}).

@ The best constants Ap, By are known in case {g;} C R (Haagerup, 1982).
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