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Outline

1 Dyadic analysis and the boundedness of dyadic model
operators.

2 Same kind of analysis in the X -valued setting, where
f : R→ X takes values in a Banach space.

3 Connection to singular integral theory via representation
theorems: bounds for dyadic operators imply bounds for
singular integrals.

4 Bi-parameter analysis including the boundedness of
bi-parameter model operators and singular integrals.
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Notation

We will work with functions f : R→ R (one-parameter setup)
or with with functions f : R× R→ R (bi-parameter setup).
Everything would also work in Rd or Rd1 × Rd2 .

D0 = {2−k([0, 1) + m) : k ∈ Z,m ∈ Z} is the standard dyadic
grid. For each ω ∈ Ω, where Ω = {0, 1}Z, we define the lattice

Dω = {I + ω : I ∈ D0},

where
I + ω := I +

∑
k : 2−k<`(I )

ωk2−k .

Here the side length of I is denoted by `(I ).

Usually we work in some fixed D = Dω. We can induce
randomness to ω 7→ Dω by equipping Ω with the natural
probability product measure P.
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Notation

For a fixed I ∈ D and a locally integrable f we define as follows.

If k ∈ Z, k ≥ 0, then I (k) denotes the unique interval J ∈ D
for which I ⊂ J and `(I ) = 2−k`(J).

The dyadic children of I are denoted by
ch(I ) = {I ′ ∈ D : (I ′)(1) = I} = {I−, I+}.
An average over I is 〈f 〉I = 1

|I |
∫
I f . We also write

EI f = 〈f 〉I1I and E2−k f =
∑

I : `(I )=2−k EI f .

The martingale difference ∆I f is defined by
∆I f =

∑
I ′∈ch(I ) EI ′f − EI f .

For k ∈ Z, k ≥ 0, we define the martingale difference and
average blocks

∆k
I f =

∑
J∈D
J(k)=I

∆J f and E k
I f =

∑
J∈D
J(k)=I

EJ f .

An integral pairing is 〈f , g〉 =
∫
fg .
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Basic decompositions of functions

Let f : R→ R be locally integrable and I ∈ D. We can write the
martingale difference on I = I− ∪ I+ via

∆I f :=
∑

I∈ch(I )

1I ′〈f 〉I ′ − 1I 〈f 〉I

=
1I−
|I−|

∫
I−

f +
1I+
|I+|

∫
I+

f − 1I
|I |

∫
I
f

=
2 · 1I−
|I |

∫
I−

f +
2 · 1I+
|I |

∫
I+

f −
(1I− + 1I+)

|I |

(∫
I−

f +

∫
I+

f
)

= 1I−

( 1

|I |

∫
I−

f − 1

|I |

∫
I+

f
)
− 1I+

( 1

|I |

∫
I−

f − 1

|I |

∫
I+

f
)

= (1I− − 1I+)
1

|I |

∫
(1I− − 1I+)f = 〈f , hI 〉hI ,

where hI is the Haar function on I defined by

hI :=
1

|I |1/2
(1I− − 1I+).
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Basic decompositions of functions

As the following sum is telescoping, we have∑
I∈D

2−k1<`(I )≤2−k2

∆I f = E2−k1 f − E2−k2 f .

Therefore, we have both pointwise almost everywhere and in
Lp(R), 1 < p <∞, that

Fundamental decomposition

f = lim
k1→∞
k2→−∞

∑
I∈D

2−k1<`(I )≤2−k2

∆I f =:
∑
I∈D

∆I f =
∑
I∈D
〈f , hI 〉hI .

This uses Lebesgue’s differentation theorem (to get
limk1→∞ E2−k1 f = f ) and the domination |E2−k f | ≤ MDf (to get
the Lp convergence). Here MDf = supI∈D 1I 〈|f |〉I .
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Square Functions

Define the dyadic square function

SDf :=
(∑

I∈D
|∆I f |2

)1/2
=
(∑

I∈D
|〈f , hI 〉|2

1I
|I |

)1/2

A . B means A ≤ CB; A ∼ B means B . A . B (C constant).

Theorem

We have ‖f ‖Lp ∼ ‖SDf ‖Lp , 1 < p <∞.

Proof.

Enough: ‖SDf ‖Lp . ‖f ‖Lp (by duality). Here p = 2 follows by
orthogonality and then p ∈ (1, 2) via the weak (1, 1) endpoint and
interpolation. The case p ∈ (2,∞) uses Fefferman–Stein

‖g‖Lp . ‖M]
Dg‖Lp , where M]

Dg = supI∈D 1I 〈|g − 〈g〉I |〉I :

‖SDf ‖Lp = ‖(SDf )2‖1/2

Lp/2 . ‖M]
D((SDf )2)‖1/2

Lp/2 . ‖MDf 2‖1/2

Lp/2 .

Here the last inequality was a simple pointwise estimate.
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Towards Dyadic Shifts: Martingale Transforms

Consider a martingale transform (also called a Haar multiplier)

f =
∑
I∈D
〈f , hI 〉hI 7→

∑
I∈D

λI 〈f , hI 〉hI ,

where |λI | ≤ 1 for every I ∈ D.

As we have∑
I∈D
|λI ||〈f , hI 〉||〈g , hI 〉| ≤

∫ ∑
I∈D
|〈f , hI 〉||〈g , hI 〉|

1I
|I |

≤ ‖SDf ‖Lp‖SDg‖Lp′ . ‖f ‖Lp‖g‖Lp′ ,

we have that martingale transforms are bounded Lp → Lp,
1 < p <∞.

H. Martikainen Shifts and Singular Integrals



Dyadic Shifts

A dyadic shift is a simple generalisation of a martingale transform.
It comes with the associated notion of complexity involving
i , j ∈ {0, 1, 2, . . .}. A martingale transform has i = j = 0.

Dyadic shifts

A dyadic shift has the form

S i ,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈f , hI 〉hJ , |aKIJ | ≤
|I |1/2|J|1/2

|K |
.
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Boundedness of Shifts: Lp → Lp

Theorem

We have ‖S i ,j
D f ‖Lp . ‖f ‖Lp , 1 < p <∞.

Proof:∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

|aKIJ ||〈f , hI 〉||〈g , hJ〉|

≤
∑
K∈D

1

|K |
∑
I ,J∈D

I (i)=J(j)=K

∫
I
|∆i

K f |
∫
J
|∆j

Kg |

=

∫ ∑
K∈D
〈|∆i

K f |〉K 〈|∆
j
Kg |〉K1K

≤
∥∥∥( ∑

K∈D
〈|∆i

K f |〉2K1K

)1/2∥∥∥
Lp

∥∥∥( ∑
K∈D
〈|∆j

Kg |〉
2
K1K

)1/2∥∥∥
Lp′
.
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Boundedness of Shifts: Lp → Lp

The next step is to use Stein’s inequality to remove the averages:∥∥∥( ∑
K∈D
〈|∆i

K f |〉2K1K

)1/2∥∥∥
Lp

.
∥∥∥( ∑

K∈D
|∆i

K f |2
)1/2∥∥∥

Lp
.

This has an easy proof, but one could also use the somewhat
harder Fefferman–Stein inequality∥∥∥( ∑

K∈D
[MDfK ]2

)1/2∥∥∥
Lp

.
∥∥∥( ∑

K∈D
|fK |2

)1/2∥∥∥
Lp
.

In any case, we are done with the boundedness of shifts as given K
the intervals P for which P(i) = K are disjoint, and thus∥∥∥( ∑

K∈D
|∆i

K f |2
)1/2∥∥∥

Lp
=
∥∥∥(∑

I∈D
|∆I f |2

)1/2∥∥∥
Lp
∼ ‖f ‖Lp .
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Vector-Valued Analysis: UMD Spaces

Definition

A Banach space X is said to be a UMD space if

∥∥∥ N∑
i=1

εidi

∥∥∥
Lp(Ω;X )

.
∥∥∥ N∑

i=1

di

∥∥∥
Lp(Ω;X )

for all X -valued Lp-martingale difference sequences (di )
N
i=1 (defined

on some probability space Ω), and for all signs εi ∈ {−1 + 1}.

The spaces X = R and X = C are UMD. The UMD property is
independent of the choice of the exponent p ∈ (1,∞). If X is
UMD then so is X ∗ and Lp(Rd ;X ), 1 < p <∞. This is also
automatically a two-sided estimate (apply to εidi ):∥∥∥ N∑

i=1

εidi

∥∥∥
Lp(Ω;X )

∼
∥∥∥ N∑

i=1

di

∥∥∥
Lp(Ω;X )

.
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Vector-Valued Analysis: UMD Spaces

Remark

We do not want to carefully define what is a martingale difference.
What is relevant for us is that for the martingale differences ∆I f ,
I ∈ D, where f : R→ X , we have∥∥∥∑

I∈D′
εI∆I f

∥∥∥
Lp(X )

∼
∥∥∥∑
I∈D′

∆I f
∥∥∥
Lp(X )

, εI = ±1,

where D′ ⊂ D and Lp(X ) := Lp(R;X ).

Notice that ∆I f has the exact same definition as in the
scalar-valued case – the appearing integrals

∫
I f ∈ X are

interpreted as standard Bochner integrals.

In particular, we have∥∥∥∑
I∈D

εI∆I f
∥∥∥
Lp(X )

∼ ‖f ‖Lp(X ).
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Random signs

We say that {εk}k is a collection of independent random signs,
if there exists a probability space (M, µ) so that
εk : M→ {−1, 1}, {εk}k is independent and

µ({εk = 1}) = µ({εk = −1}) = 1/2.

In X -valued analysis we often average over independent random
signs (εI ) as in

E
∥∥∥∑
I∈D

εI∆I f
∥∥∥
Lp(X )

∼ ‖f ‖Lp(X ).

This is the replacement of square function estimates in the
scalar-valued setting! Indeed, in the scalar-valued setting

E
∥∥∥∑
I∈D

εI∆I f
∥∥∥
Lp
∼
∥∥∥(∑

I∈D
|∆I f |2

)1/2∥∥∥
Lp
.
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Kahane–Khintchine Inequality

The Kahane–Khintchine inequality says that

(
E
∣∣∣ N∑
i=1

εixi

∣∣∣q
X

)1/q
∼q

(
E
∣∣∣ N∑
i=1

εixi

∣∣∣2
X

)1/2

for all 1 ≤ q <∞, Banach spaces X and xi ∈ X .

The previous connection to square functions follows by using
Kahane–Khintchine a few times and noticing that in the scalar case

E
∣∣∣∑

I

εI∆I f (x)
∣∣∣2 =

∑
I ,J

E(εI εJ)∆I f (x)∆J f (x)

=
∑
I ,J

δI ,J∆I f (x)∆J f (x) =
∑
I

|∆I f (x)|2.
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Kahane Contraction Principle

The Kahane contraction principle says that if (am)Mm=1 is a
sequence of scalars and p ∈ (0,∞], then

(
E
∣∣∣ M∑
m=1

εmamxm

∣∣∣p
X

)1/p
. max |am|

(
E
∣∣∣ M∑
m=1

εmxm

∣∣∣p
X

)1/p
.

In the scalar-valued, square function setting, estimates like∑
I∈D
|aI |2|∆I f |2 ≤

∑
I∈D
|∆I f |2, |aI | ≤ 1,

are more than obvious. Kahane’s result simply says that in random
sums we can do similar things.
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Boundedness of Martingale Transforms: Lp(X )→ Lp(X )

Suppose f : R→ X , where X is UMD, and that |λI | ≤ 1. Then we
have∥∥∥∑

I∈D
λI 〈f , hI 〉hI

∥∥∥
Lp(X )

∼ E
∥∥∥∑
I∈D

εIλI 〈f , hI 〉hI
∥∥∥
Lp(X )

∼
(
E
∥∥∥∑
I∈D

εIλI 〈f , hI 〉hI
∥∥∥p
Lp(X )

)1/p

.
(
E
∥∥∥∑
I∈D

εI 〈f , hI 〉hI
∥∥∥p
Lp(X )

)1/p

∼ E
∥∥∥∑
I∈D

εI∆I f
∥∥∥
Lp(X )

∼ ‖f ‖Lp(X ),

where we used the UMD property to introduce and to remove the
random signs, Kahane–Khintchine inequality repeatedly and
Kahane contraction principle once (to remove λI ).
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Decoupling inequality

The Lp(X )→ Lp(X ) boundedness of Martingale Transforms – that
is, complexity zero shifts – was an application of the most
fundamental X -valued tools. The case of a general dyadic shift is
surprisingly more involved due to the complexity. For this, we need
one more tool: the decoupling inequality.

Decoupling notation

For I ∈ D let VI be the probability measure space

VI = (I , Leb(I ), |I |−1 dxbI ).

Define the product probability space

V = VD =
∏
I∈D
VI ,

and let ν be the related product measure. If y ∈ V, we denote the
coordinate related to I ∈ D by yI .
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Decoupling inequality

Let k ∈ {0, 1, 2, . . . } and j ∈ {0, . . . , k}. Define the sublattice
Dj ,k ⊂ D by

Dj ,k = {Q ∈ D : `(Q) = 2m(k+1)+j for some m ∈ Z}.

If I , I ′ ∈ Dj ,k such that I ′ ( I , then `(I ′) < 2−k`(I ).

Proposition (Decoupling (McConnell, Hytönen,
Hytönen–Hänninen))

If X is UMD and p ∈ (1,∞) then∫
R

∣∣∣ ∑
I∈Dj,k

∆u
I f (x)

∣∣∣p
X
dx

∼ E
∫
R

∫
V

∣∣∣ ∑
I∈Dj,k

εI1I (x)∆u
I f (yI )

∣∣∣p
X
dν(y) dx

for any u ∈ {0, 1, . . . , k}.
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Boundedness of Dyadic Shifts: Lp(X )→ Lp(X )

Lets fix the dyadic shift

S i ,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈f , hI 〉hJ , |aKIJ | ≤
|I |1/2|J|1/2

|K |
.

We begin with the following consequence of the UMD property
and Kahane–Khintchine inequality

‖S i ,j
D f ‖Lp(X ) ∼ E

∥∥∥∑
P∈D

εP∆j
PS

i ,j
D f
∥∥∥
Lp(X )

= E
∥∥∥ ∑
K∈D

εK
∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈∆i
K f , hI 〉hJ

∥∥∥
Lp(X )

∼
(
E
∥∥∥ ∑
K∈D

εK
∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈∆i
K f , hI 〉hJ

∥∥∥p
Lp(X )

)1/p
.
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Boundedness of Dyadic Shifts: Lp(X )→ Lp(X )

Next, we define the kernel

aK (x , y) = |K |
∑
I ,J∈D

I (i)=J(j)=K

aKIJhI (y)hJ(x),

and notice that |aK (x , y)| ≤ 1. We can now write∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈∆i
K f , hI 〉hJ(x) =

1

|K |

∫
K
aK (x , y)∆i

K f (y) dy .

The decoupling space allows us to further write this in the
convenient form:

1

|K |

∫
K
aK (x , y)∆i

K f (y) dy =

∫
V
aK (x , yK )∆i

K f (yK ) dν(y).
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Boundedness of Dyadic Shifts: Lp(X )→ Lp(X )

The idea is that we can now take the
∫
V integral outside the K

summation and use Hölder’s inequality (
∫
V |g |X ≤

( ∫
V |g |

p
X

)1/p
):(

E
∥∥∥∫
V

∑
K∈D

εKaK (x , yK )∆i
K f (yK )dν(y)

∥∥∥p
Lpx (X )

)1/p

≤
(
E
∫
R

∫
V

∣∣∣ ∑
K∈D

εKaK (x , yK )∆i
K f (yK )

∣∣∣p
X
dν(y)dx

)1/p
.

We are finally in the position to use |aK (x , y)| ≤ 1 and the Kahane
contraction principle – after this we are left with(

E
∫
R

∫
V

∣∣∣ ∑
K∈D

εK1K (x)∆i
K f (yK )

∣∣∣p
X
dν(y) dx

)1/p
.
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Boundedness of Dyadic Shifts: Lp(X )→ Lp(X )

We have arrived at the term from the decoupling inequality –
justifying its a priori weird form. A technical detail is that we have
the full grid D here – we can simply fix this by writing in the
beginning

D =
i⋃

v=0

Dv ,i

and doing the previous estimate with each piece Du,i separately.

With such a fixed v we get(
E
∫
R

∫
V

∣∣∣ ∑
K∈Dv,i

εK1K (x)∆i
K f (yK )

∣∣∣p
X
dν(y) dx

)1/p

∼
(∫

R

∣∣∣ ∑
K∈Dv,i

∆i
K f (x)

∣∣∣p
X
dx
)1/p

. ‖f ‖Lp(X ).

To see the last inequality you need to again introduce random signs
(by UMD) and remove the summing restriction by contraction.
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Boundedness of Dyadic Shifts: Lp(X )→ Lp(X )

We have proved the following:

Theorem

If X is UMD and p ∈ (1,∞) then

‖S i ,j
D f ‖Lp(X ) . (1 + i)‖f ‖Lp(X ).

With duality it is possible to get the constant 1 + min(i , j) here.
We will soon see that when we apply the theory of shifts to prove
results for singular integrals, any polynomial dependence will be
OK. Thus, we do not care too much.
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Standard Kernels

Let K : R× R \∆→ R, where ∆ := {(x , y) ∈ R× R : x = y},
satisfy the size estimate

|K (x , y)| . 1

|x − y |

and, for some α ∈ (0, 1], the Hölder estimates

|K (x , y)−K (x ′, y)| . |x − x ′|α

|x − y |1+α
, whenever |x−x ′| ≤ |x−y |/2

and

|K (x , y)−K (x , y ′| . |y − y ′|α

|x − y |1+α
, whenever |y−y ′| ≤ |x−y |/2.

Example: K (x , y) = 1/(x − y). Such a K is called a standard
singular integral kernel. We denote the best kernel constant by
‖K‖CZα .
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Singular Integrals

A linear operator T – a priori defined on linear combinations of
indicators of intervals – is called a singular integral operator
(SIO) if there exists a standard kernel K so that, whenever
spt f ∩ spt g = ∅, we have

〈Tf , g〉 =

∫
R

∫
R
K (x , y)f (y)g(x)dx dy .

This kernel structure alone is not enough for boundedness
properties. An SIO T is called a Calderón–Zygmund operator
(CZO) if for all intervals I ⊂ R we have∫

I
|T1I | . |I | and

∫
I
|T ∗1I | . |I |.

If an SIO T is Lp, p ∈ (1,∞), bounded, then T is clearly a CZO.
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T1 ∈ BMO

The completely formal object T1(x) =
∫
K (x , y)dy can be

defined in the sense that all the following pairings are well-defined:

〈T1, ϕI 〉 := 〈T13I , ϕI 〉+

∫
(3I )c

∫
I
[K (x , y)− K (cI , y)]ϕI (y)dy dx

for all ϕI supported on an interval I with
∫
ϕI = 0 and

‖ϕI‖L∞ ≤ 1. By the Hölder estimate of K the second term is a
well-defined absolutely convergent integral dominated by |I |.

We say T1 ∈ BMO if for all intervals I and ϕI like above we have

|〈T1, ϕI 〉| . |I |.

Best constant is denoted ‖T1‖BMO. As observed above this
follows from

|〈T13I , ϕI 〉| . |I |.
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CZO Reformulation

If
|〈T1I , 1I 〉| . |I |

for all intervals I ⊂ R, T is said to satisfy the weak boundedness
property (WBP) – best constant is denoted by ‖T‖WBP.

Lemma

An SIO T is a CZO if and only if T1 ∈ BMO, T ∗1 ∈ BMO and
the WBP holds.

Proof: If T is a CZO, then the desired conditions hold trivially (for
the BMO recall that it is enough to control 〈T13I , ϕI 〉).

Suppose conversely that T1 ∈ BMO and the WBP holds. Then∫
I
|T1I | = sup

∣∣∣ ∫ T (1I )1Ig
∣∣∣,

where ‖g‖L∞ ≤ 1.Write 1Ig = 1I (g − 〈g〉I ) + 1I 〈g〉I , and control
the first term by T1 ∈ BMO and the second by the WBP.
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The Representation Theorem

Theorem (Hytönen)

Suppose T is a CZO. Then

〈Tf , g〉 = C (‖K‖CZα + ‖T‖WBP)Eω
∞∑

i ,j=0

2−αmax(i ,j)/2〈S i ,j
ω f , g〉

+ C‖T1‖BMOEω
〈 πω,T1f

C‖T1‖BMO
, g
〉

+ C‖T ∗1‖BMOEω
〈 π∗ω,T∗1f

C‖T ∗1‖BMO
, g
〉
.

Here C = C (α) <∞, S i ,j
ω is a dyadic shift in the grid Dω and

πω,bf :=
∑
I∈Dω

〈b, hI 〉〈f 〉IhI

is a dyadic paraproduct in the grid Dω.
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Boundedness of CZOs

If X is a Banach space and T is a CZO, we can hit simple
functions f =

∑N
i=1 fixi , where fi are scalar-valued and xi ∈ X , by

Tf =
∑N

i=1(Tfi )xi . These are dense in Lp(X ).

Corollary

Let T be a CZO, X be a UMD space and p ∈ (1,∞). Then we
have

‖Tf ‖Lp(X ) . ‖f ‖Lp(X ).

For now, we only know this result for those SIOs T satisfying
T1 = T ∗1 = 0 and the WBP, as we have only proved results for
the dyadic shifts. Convolution form SIOs (K (x , y) = K (x − y))
satisfy T1 = T ∗1 = 0, so this is already a very reasonable class. In
particular, the Hilbert transform H for which K (x , y) = 1/(x − y)
maps Lp(X ) to Lp(X ) if X is UMD. In fact, X is UMD if and only
if this happens (Burkholder, Bourgain).
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Pythagoras’ Theorem and Sparse Collections

Next, we will still prove the Lp(X ) boundedness of the dyadic
paraproducts. We need some additional important tools for this.

It is trivial that∥∥∥∑
S∈S

fS

∥∥∥
Lp(X )

=
(∑

S∈S
‖fS‖pLp(X )

)1/p

if S ⊂ D is a collection of disjoint cubes and spt fS ⊂ S .

This holds as a ∼ if S is sparse and the functions fS satisfy some
additional assumptions. The collection S is sparse if for all S ∈ S
there is ES ⊂ S so that the sets ES are mutually disjoint and
|ES | & |S |.
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Pythagoras’ Theorem and Sparse Collections

Lemma

Let X be a Banach space and p ∈ (1,∞). Let S ⊂ D be a sparse
collection of dyadic cubes, and assume that for each S ∈ S we
have a function fS that satisfies:

spt fS ⊂ S;∫
fS = 0;

fS is constant on the maximal S ′ ∈ S satisfying S ′ ( S (the
collection of such S ′ is denoted by chS(S)).

Then we have ∥∥∥∑
S∈S

fS

∥∥∥
Lp(X )

∼
(∑

S∈S
‖fS‖pLp(X )

)1/p
.
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Estimate for (〈T1, hI 〉)I∈D
Define the scalars aI = 〈T1, hI 〉/C‖T1‖BMO, where T is a CZO.
Define the function b =

∑
I aIhI . Then it is easy to see that

b ∈ BMO1 in the usual sense, and so by square function estimates
and John–Nirenberg inequality we have for p ∈ (1,∞) that

sup
I0∈D

1

|I0|1/p
∥∥∥(∑

I⊂I0

|aI |2
1I
|I |

)1/2∥∥∥
Lp

= sup
I0∈D

1

|I0|1/p
∥∥∥(∑

I⊂I0

|〈b, hI 〉|2
1I
|I |

)1/2∥∥∥
Lp

∼ sup
I0∈D

1

|I0|1/p
∥∥∥∑
I⊂I0

〈b, hI 〉hI
∥∥∥
Lp

= sup
I0∈D

1

|I0|1/p
‖1I0(b − 〈b〉I0)‖Lp ∼ sup

I0∈D

1

|I0|
‖1I0(b − 〈b〉I0)‖L1 <∞.

Thus

sup
I0∈D

1

|I0|1/p
∥∥∥(∑

I⊂I0

|aI |2
1I
|I |

)1/2∥∥∥
Lp

. 1.
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Stopping Construction: Principal Intervals

Fix a function f : R→ X . Given an intercal I0 ∈ D let Stop(I0)
denote the maximal I ⊂ I0 such that 〈|f |X 〉I > 2〈|f |X 〉I0 . With
I0 ∈ D fixed we define S0(I0) = {I0} and

Sj+1(I0) =
⋃

I∈Sj (I0)

Stop(I ), j ≥ 0.

We define the sparse collection of stopping intervals

S = S(I0) =
∞⋃
j=0

Sj(I0),

for each S ∈ S we set

ES = S \
⋃

S ′∈Stop(S)

S ′,

and for each I ⊂ I0 we denote by πI = πS I the smallest S ∈ S
such that I ⊂ S . Notice also chS(S) = Stop(S).
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Boundedness of Dyadic Paraproducts: Lp(X )→ Lp(X )

Fix a UMD space X , p ∈ (1,∞), a function f : R→ X and a
dyadic paraproduct

πDf =
∑
I∈D

aI 〈f 〉IhI , sup
I0∈D

1

|I0|1/p
∥∥∥(∑

I⊂I0

|aI |2
1I
|I |

)1/2∥∥∥
Lp
≤ 1.

Fix an arbitrary I0 ∈ D and notice that it is enough to bound∑
I⊂I0

aI 〈f 〉IhI =
∑
S∈S

∑
πI=S

aI 〈f 〉IhI .

By Pythagoras’ we have∥∥∥∑
I⊂I0

aI 〈f 〉IhI
∥∥∥
Lp(X )

∼
(∑

S∈S

∥∥∥ ∑
πI=S

aI 〈f 〉IhI
∥∥∥p
Lp(X )

)1/p
.
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Boundedness of Dyadic Paraproducts: Lp(X )→ Lp(X )

Given S ∈ S we can now replace f with

fS = f 1E(S) +
∑

S ′∈Stop(S)

〈f 〉S ′1S ′

as 〈f 〉I = 〈fS〉I if πI = S . Key property: ‖fS‖L∞(X ) . 〈|f |X 〉S .

By UMD we have∥∥∥ ∑
πI=S

aI 〈fS〉IhI
∥∥∥
Lp(X )

∼ E
∥∥∥ ∑
πI=S

εIaI 〈fS〉I
1I
|I |1/2

∥∥∥
Lp(X )

.

By UMD-valued Stein’s inequality (by Bourgain) we can remove
the averages and have

E
∥∥∥ ∑
πI=S

εIaI 〈fS〉I
1I
|I |1/2

∥∥∥
Lp(X )

. E
∥∥∥ ∑
πI=S

εIaI fS
1I
|I |1/2

∥∥∥
Lp(X )

.
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Boundedness of Dyadic Paraproducts: Lp(X )→ Lp(X )

Next, we have

E
∥∥∥ ∑
πI=S

εIaI fS
1I
|I |1/2

∥∥∥
Lp(X )

≤ ‖fS‖L∞(X )E
∥∥∥∑

I⊂S
εIaI

1I
|I |1/2

∥∥∥
Lp

∼ ‖fS‖L∞(X )

∥∥∥(∑
I⊂S
|aI |2

1I
|I |

)1/2∥∥∥
Lp
.

Recalling
‖fS‖L∞(X ) . 〈|f |X 〉S

and ∥∥∥(∑
I⊂S
|aI |2

1I
|I |

)1/2∥∥∥
Lp
≤ |S |1/p,

we have∑
S∈S

∥∥∥ ∑
πI=S

aI 〈f 〉IhI
∥∥∥p
Lp(X )

.
∑
S∈S
〈|f |X 〉pS |S | . ‖f ‖

p
Lp(X ).

The last estimate is a simple consequence of the sparseness of S.
We are done with the Lp(X ) boundedness of paraproducts.
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Multi-Parameter Analysis

Classical one-parameter kernels are “singular” (involve “division by
zero”) exactly when x = y . In contrast, the multi-parameter
theory is concerned with kernels whose singularity is spread over
the union of all hyperplanes of the form xi = yi , where x , y ∈ Rd

are written as
x = (xi )

t
i=1 ∈ Rd1 × · · · × Rdt

for a fixed partition d = d1 + . . .+ dt . The bi-parameter case
d = d1 + d2 is already representative of many of the challenges
arising in this context. The prototype example is

1/[(x1 − y1)(x2 − y2)],

the product of Hilbert kernels in both coordinate directions of R2,
but general two-parameter kernels are neither assumed to be of the
product nor of the convolution form.
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Bi-Parameter Shifts

We work in R2 = R × R, fix two dyadic grids Dk in R, k = 1, 2,
and write D = D1 ×D2 for the related dyadic rectangles. If

I = I1 × I2 ∈ D and i = (i1, i2), then I (i) := I
(i1)
1 × I

(i2)
2 . Moreover,

we define hI := hI1 ⊗ hI2 .

A bi-parameter shift has the form

S i,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈f , hI 〉hJ ,

where f is a function defined in R2 and

|aKIJ | ≤
|I |1/2|J|1/2

|K |
=
|I1|1/2|J1|1/2

|K1|
|I2|1/2|J2|1/2

|K2|
.
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Bi-Parameter Shifts vs Operator-Valued Shifts

We can write a bi-parameter shift

S i,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

aKIJ〈f , hI 〉hJ ,

in the form ∑
K1∈D1

∑
I1,J1∈D1

I
(i1)
1 =J

(j1)
1 =K1

S i2,j2
K1I1J1

〈f , hI1〉hJ1 ,

where S i2,j2
K1I1J1

= S i2,j2
D2,K1I1J1

is a one-parameter dyadic shift in R
defined by

S i2,j2
K1I1J1

g =
∑

K2∈D2

∑
I2,J2∈D2

I
(i2)
2 =J

(j2)
2 =K2

aKIJ〈g , hI2〉hJ2 .
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Bi-Parameter Shifts vs Operator-Valued Shifts

In this sense the bi-parameter shift S i,j
D is a dyadic shift in R of

complexity (i1, j1) but with operator coefficients S i2,j2
K1I1J1

.

This leads us to study a general one-parameter operator-valued
dyadic shift

S i ,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

bKIJ〈f , hI 〉hJ ,

where D is again just a dyadic grid in R (not the collection of
dyadic rectangles in R2 like just above), bKIJ ∈ L(X ,Y ) are
bounded linear operators between two UMD spaces X and Y and
f : R→ X .

Under which conditions on the operators bKIJ is the
operator-valued shift S i ,j

D bounded Lp(X )→ Lp(Y )?
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Operator-Valued Shifts

The proof of the UMD-valued boundedness of the usual
scalar-valued shifts works also here. Following the proof we still
reduce to bounding(

E
∫
R

∫
V

∣∣∣ ∑
K∈Dv,i

εKbK (x , yK )∆i
K f (yK )

∣∣∣p
Y
dν(y) dx

)1/p
,

where this time the kernels

bK (x , y) := |K |
∑
I ,J∈D

I (i)=J(j)=K

bKIJhI (y)hJ(x),

are not scalar-valued and bounded (so that we could use Kahane’s
contraction principle), but rather take values in L(X ,Y ).
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Operator-Valued Shifts

Notice that with a fixed K and x , y , we have with some unique I
and J (depending on x , y) that

bK (x , yK ) = ± |K |
|I |1/2|J|1/2

bKIJ .

To end the proof in exactly the same way as in the scalar-valued
case, we simply need to assume that the family of normalised
operators

|K |
|I |1/2|J|1/2

bKIJ

can be removed as if the Kahane’s contraction principle would hold
for them. This is called R-boundedness – a notion which is more
demanding than assuming that this normalised family of operators
is uniformly bounded.
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R-boundedness

Definition

If X and Y are Banach spaces and T ⊂ L(X ,Y ), we say that T is
R-bounded if there exists a constant C such that for all integers
K ≥ 1, all Tk ∈ T and for all xk ∈ X , the inequality

E
∣∣∣ K∑
k=1

εkTkxk

∣∣∣
Y
≤ CE

∣∣∣ K∑
k=1

εkxk

∣∣∣
X

holds.The smallest constant C is denoted by R(T ).

Recall that by Kahane–Khintchine inequality we can use whatever
exponent in the random sums.
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Operator-Valued Shifts

Theorem (Boundedness of OP-valued shifts)

Let X and Y be UMD spaces. The one-parameter operator-valued
shift

S i ,j
D f =

∑
K∈D

∑
I ,J∈D

I (i)=J(j)=K

bKIJ〈f , hI 〉hJ

is bounded Lp(X )→ Lp(Y ), p ∈ (1,∞), if the family of operators

C(S i ,j
D ) :=

{
|K |

|I |1/2|J|1/2
bKIJ ∈ L(X ,Y ) : K = I (i) = J(j)

}

is R-bounded. In fact, we have

‖S i ,j
D f ‖Lp(Y ) . R(C(S i ,j

D ))(1 + min(i , j))‖f ‖Lp(X ).
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Back to Bi-Parameter Shifts

We now return to our bi-parameter shift, and recall that for a
certain one-parameter dyadic shift S i2,j2

K1I1J1
we could write

S i,j
D f =

∑
K1∈D1

∑
I1,J1∈D1

I
(i1)
1 =J

(j1)
1 =K1

S i2,j2
K1I1J1

〈f , hI1〉hJ1 .

We have been writing Lp(X ) for Lp(R;X ) all the time – but now
in the bi-parameter setting this gets confusing as we need to
consider Lp(R2;X ) etc.

Moreover, if here f : R2 → X belongs to Lp(R2;X ) we should
think (for the OP-valued theory) of this space in the form
Lp(R; Lp(R;X )). For this reason, we might as well consider the
more general mixed-norm spaces Lp1(R; Lp2(R;X )) =: Lp1Lp2(X ).
We mean specifically Lp1

x1L
p2
x2 in what follows.
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Bi-Parameter Shifts: Boundedness in Lp1Lp2(X )

Suppose X is UMD, f : R2 → X and fix p1, p2 ∈ (1,∞). By the
OP-valued theory of shifts the bi-parameter shift satisfies

‖S i,j
D f ‖Lp1Lp2 (X ) . C (1 + min(i1, j1))‖f ‖Lp1Lp2 (X ),

where

C := R

({
|K1|

|I1|1/2|J1|1/2
S i2,j2
K1I1J1

∈ L(Lp2(X )) : K1 = I
(i1)
1 = J

(j1)
1

})
.

For each fixed K1, I1, J1, the scalar-coefficients, indexed by
K2, I2, J2, of the shift

|K1|
|I1|1/2|J1|1/2

S i2,j2
K1I1J1

satisfy precisely the usual normalisation of a one-parameter shift∣∣∣ |K1|
|I1|1/2|J1|1/2

aKIJ

∣∣∣ ≤ |I2|1/2|J2|1/2

|K2|
.
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R-boundedness of one-parameter shifts

We have reduced to a question concerning a family of
one-parameter shifts: if for each k we are given a one-parameter
shift S i ,j

k , is the family (S i ,j
k ) R-bounded in Lp(X ) for every

p ∈ (1,∞)? This actually requires more than just X being UMD.

Definition

A Banach space X has Pisier’s property (α) if for all N, all αi ,j in
the complex unit disc and all xi ,j ∈ X , 1 ≤ i , j ≤ N, there holds

EE′
∣∣∣ ∑

1≤i ,j≤N
εiε
′
jαi ,jxi ,j

∣∣∣
X
. EE′

∣∣∣ ∑
1≤i ,j≤N

εiε
′
jxi ,j

∣∣∣
X
.

Here (εi ) and (ε′j) are sequences of independent random signs.

By Kahane–Khintchine we can use whatever exponent here. The
scalars have Pisier’s (α), and if X has Pisier’s (α) so does Lp(X ).
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R-boundedness of one-parameter shifts

Pisier’s property (α) arises naturally in multi-parameter X -valued
analysis, together with the already familiar UMD condition. One
reason is that the R-boundedness of one-parameter shifts, or the
boundedness of bi-parameter shifts, requires this.

Theorem

Let X be a UMD space satisfying Pisier’s property (α). Suppose
that we are given a family {S i ,j

k : k ∈ K} of dyadic one-parameter
shifts of fixed complexity (i , j).Then for all p ∈ (1,∞) we have

R({S i ,j
k ∈ L(Lp(X )) : k ∈ K}) . 1 + min(i , j).

Corollary

Let X be a UMD space satisfying Pisier’s property (α) and

p1, p2 ∈ (1,∞). Then a bi-parameter shift S i,j
D satisfies

‖S i,j
D f ‖Lp1Lp2 (X ) . (1 + min(i1, j1))(1 + min(i2, j2))‖f ‖Lp1Lp2 (X ).
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Proof of the R-boundedness of one-parameter shifts

We give the proof in the martingale transform – i.e.,
zero-complexity case. Suppose fk ∈ Lp(X ), where X is UMD with
Pisier’s (α), and that |λI ,k | ≤ 1. Then we have

E
∥∥∥∑

k

εk
∑
I∈D

λI ,k〈fk , hI 〉hI
∥∥∥
Lp(X )

= E
∥∥∥∑
I∈D

∆I

(∑
k

εkλI ,k fk

)∥∥∥
Lp(X )

∼ EE′
∥∥∥∑
I∈D

ε′I
∑
k

εkλI ,k〈fk , hI 〉hI
∥∥∥
Lp(X )

. EE′
∥∥∥∑
I∈D

ε′I
∑
k

εk〈fk , hI 〉hI
∥∥∥
Lp(X )

= EE′
∥∥∥∑
I∈D

ε′I∆I

(∑
k

εk fk

)∥∥∥
Lp(X )

∼ E
∥∥∥∑

k

εk fk

∥∥∥
Lp(X )

.

The shift case is again more difficult and needs to go through the
decoupling based proof – but this is how Pisier’s (α) appears.
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Bi-Parameter SIOs

We model a tensor-product of two SIOs T1 ⊗ T2, which acts on a
tensor-product function f1 ⊗ f2 via the formula

(T1 ⊗ T2)(f1 ⊗ f2)(x) = T1f1(x1)T2f2(x2), x = (x1, x2) ∈ R2.

Notice that the relation

〈(T1 ⊗ T2)(f1 ⊗ f2), g1 ⊗ g2〉 = 〈T1f1, g1〉〈T2f2, g2〉

implies

The full kernel representation∫∫
R2×R2

K1(x1, y1)K2(x2, y2)(f1⊗f2)(y1, y2)(g1⊗g2)(x1, x2) dy dx

if spt f1 ∩ spt g1 = ∅ and spt f2 ∩ spt g2 = ∅;
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Bi-Parameter SIOs

The partial kernel representation∫∫
R×R
〈T2f2, g2〉K1(x1, y1)f1(y1)g1(x1) dy1 dx1

if spt f1 ∩ spt g1 = ∅;
The partial kernel representation∫∫

R×R
〈T1f1, g1〉K2(x2, y2)f2(y2)g2(x2) dy2 dx2

if spt f2 ∩ spt g2 = ∅.
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Bi-Parameter SIOs

The full kernel K (x , y) = K1(x1, y1)K2(x2, y2) satisfies many
natural estimates, like

|K (x , y)| . 1

|x1 − y1|
1

|x2 − y2|

and

|K (x , y)− K (x , (y1, y
′
2))− K (x , (y ′1, y2)) + K (x , y ′)|

.
|y1 − y ′1|α

|x1 − y1|1+α

|y2 − y ′2|α

|x2 − y2|1+α

whenever |y1 − y ′1| ≤ |x1 − y1|/2 and |y2 − y ′2| ≤ |x2 − y2|/2.
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Bi-Parameter SIOs

The partial kernel

Kf2,g2(x1, y1) := 〈T2f2, g2〉K1(x1, y1)

satisfies the usual one-parameter kernel estimates with the
constant C (f2, g2) = ‖K1‖CZα |〈T2f2, g2〉|.

If T2 is a CZO, then we have

C (1I , gI ) + C (gI , 1I ) .
∫
I
|T21I |+

∫
I
|T ∗2 1I | . |I |

for all intervals I and functions gI supported on I satisfying
‖gI‖L∞ ≤ 1

Partial kernels Kf1,g1(x2, y2) behave analogously if T1 is a CZO.
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Bi-Parameter SIOs

However, tensor-products T1 ⊗ T2 are not particularly interesting.
Indeed, we can write

(T1 ⊗ T2)f = T 1
1 T

2
2 f ,

where e.g. T 1
1 f (x) := T1(f (·, x2))(x1), and then Fubini shows

‖(T1 ⊗ T2)f ‖Lp ≤ ‖T1‖Lp→Lp‖T2‖Lp→Lp‖f ‖Lp .

Definition

A linear operator acting on suitable functions defined in R2 is a
bi-parameter SIO, if it has full and partial kernel representations
that satisfy the estimates a tensor product model does.
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Bi-Parameter SIOs

This means that we require that the pairing

〈T (f1 ⊗ f2), g1 ⊗ g2〉
has, under the natural support conditions, the full kernel
representation∫∫

R2×R2

K (x , y)(f1 ⊗ f2)(y1, y2)(g1 ⊗ g2)(x1, x2) dy dx ,

for some K satisfying the various product estimates from above,
and partial kernel representations like∫∫

R×R
Kf2,g2(x1, y1)f1(y1)g1(x1) dy1 dx1,

where the kernel satisfies the 1-parameter kernel bounds with a
constant C (f2, g2) satisfying

C (1I , gI ) + C (gI , 1I ) . |I |
for all intervals I and functions gI supported on I satisfying
‖gI‖L∞ ≤ 1.
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Bi-Parameter CZOs

So what are the conditions we should impose on 2-parameter SIOs
to make them bounded (in the 1-parameter setting we demanded
WBP and T1,T ∗1 ∈ BMO.)

Recall that for 1-parameter T the BMO condition we really used
was that for all p ∈ (1,∞) we have

sup
I0∈D

1

|I0|1/p
∥∥∥(∑

I⊂I0

|aI |2
1I
|I |

)1/2∥∥∥
Lp
<∞, aI = 〈T1, hI 〉.

For a 2-parameter SIO the analog of ’T1 ∈ BMO’ will be that
uniformly for all dyadic grids D1,D2 we have

sup
Ω

1

|Ω|1/p
∥∥∥( ∑

I∈D1×D2

I⊂Ω

|aI |2
1I
|I |

)1/2∥∥∥
Lp
<∞, aI = 〈T1, hI 〉,

where the supremum is over all open sets Ω of finite measure. The
exponent p does not matter here – the conditions are the same for
all p ∈ (0,∞) (by a John–Nirenberg style argument).
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Bi-Parameter CZOs

We will abbreviate this condition with ’T1 ∈ BMOprod’. We will
have to assume this not only for T and T ∗ but also for the partial
adjoint T1 and its dual:

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 := 〈T (g1 ⊗ f2), f1 ⊗ g2〉.

Thus, ’T1,T ∗1,T1(1), (T1)∗(1) ∈ BMOprod’ will be among our
assumptions. What about WBP? We will assume

|〈T (1I1 ⊗ 1I2), 1I1 ⊗ 1I2〉| . |I1||I2|

for all intervals I1, I2 ⊂ R. However, this is not enough. We will, in
fact, need to incorporate some ’BMO’ here as well and assume

|〈T (aI1 ⊗ 1I2), 1I1 ⊗ 1I2〉| . |I1||I2|

whenever spt aI1 ⊂ I1 and ‖aI1‖L∞ ≤ 1, and the three symmetric
conditions.
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Bi-Parameter CZOs

Definition

A bi-parameter SIO T satisfying

T1,T ∗1,T1(1), (T1)∗(1) ∈ BMOprod,

|〈T (aI1 ⊗ 1I2), 1I1 ⊗ 1I2〉| . |I1||I2|

whenever spt aI1 ⊂ I1 and ‖aI1‖L∞ ≤ 1, and the three other
symmetric conditions, is a bi-parameter CZO.
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Bi-Parameter Representation Theorem

Theorem (M., 2011)

Suppose T is a bi-parameter CZO. Then T is an average (over all
dyadic grids D1 and D2) of a rapidly converging sum of
bi-parameter dyadic model operators: bi-parameter shifts,
bi-parameter partial paraproducts (hybrids of shifts and
paraproducts) and full paraproducts.

Corollary

Let T be a bi-parameter CZO and p1, p2 ∈ (1,∞). Then we have

‖Tf ‖Lp1Lp2 . ‖f ‖Lp1Lp2 .

We have only considered bi-parameter shifts at this point, so the
rest of the dyadic model operators need to still be defined and
bounded to get this result.
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Vector-Valued Boundedness of Bi-Parameter CZOs

We did the shift result already even in the vector-valued situation.
Thus, we have already proved the following result:

Corollary

Let T be a bi-parameter CZO, X be a UMD space with Pisier’s
(α) and p1, p2 ∈ (1,∞). If T is free of paraproducts in the sense
that it has a representation with shifts only, then

‖Tf ‖Lp1Lp2 (X ) . ‖f ‖Lp1Lp2 (X ).

The ’paraproduct free’ can be phrased concretely in terms of
T1 = 0 type conditions – however, it is more than
T1 = T ∗1 = T1(1) = (T1)∗(1) = 0 as also the so-called ’partial
paraproducts’ are assumed to vanish here.
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Remarks

In the 1-parameter situation it was easy that if T is an Lp

bounded SIO, then T is a CZO. The non-trivial part being
that a CZO is Lp bounded.

In the bi-parameter situation this converse is also hard. Using
a so-called Journé’s covering lemma, it can be proved that if a
bi-parameter SIO T is Lp bounded, then T1 ∈ BMOprod.

However, we also need that T1(1) BMOprod. It is not true,
though, that if T is e.g. L2 bounded, then so is T1! Thus, we
can only prove that if T is a 2-parameter SIO so that T and
T1 are bounded, then T is a CZO. This detail means that the
CZO theory is not characterising just the Lp boundedness of
T but the simultaneous Lp boundedness of T and T1.
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Remarks

In the 1-parameter theory we can upgrade L2 boundedness to
Lp boundedness by proving L1 → L1,∞, interpolating and
using duality.

However, the end point L1 → L1,∞ is not true in the
bi-parameter world.

For this reason it is quite powerful that the representation
point of view gives that a CZO T is Lp bounded for every
p ∈ (1,∞) (even mixed-norm bounded).

Indeed, interpolating the only known end point
L∞ → BMOprod is very difficult, although still doable. This
interpolation requires an extensive theory of product Hardy
spaces.
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The Rest of the Bi-Parameter Model Operators

As we are modeling T1 ⊗ T2, the model operators need to include
suitable generalisations of all U1 ⊗ U2, where U1 ∈ {S1, π1, π

∗
1}

and similarly for U2. Bi-parameter shifts generalise S1 ⊗ S2.

For example, if πD1f1 =
∑

I1∈D1 aI1〈f1〉I1hI1 and
πD2f2 =

∑
I2∈D2 bI2〈f2〉I2hI2 , then (πD1 ⊗ πD2)f looks like∑

I1,I2

aI1bI2〈f 〉I1×I2hI1×I2 .

It is not so hard to see that (aI1bI2)I1,I2 satisfies the product BMO
condition. The correct generalisation then is∑

I1,I2

aI1,I2〈f 〉I1×I2hI1×I2 ,

where

sup
Ω

1

|Ω|1/2

( ∑
I1×I2⊂Ω

|aI1,I2 |
2
)1/2

≤ 1.
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Remarks on Bi-Parameter X -Valued theory

We knew how to bound bi-parameter shifts in Lp1Lp2(X ), where X
is UMD with Pisier’s (α). We do not know how to do this for quite
all these spaces X for the other model operators – the above
introduced full paraproducts or the partial paraproducts (that
generalise S1 ⊗ π2).

In practice, all known UMD spaces satisfying Pisier’s (α) are
function lattices – this means that x ∈ X is actually a function
x : Ω→ R with suitable assumptions. We could develop the
vector-valued theory of bi-parameter full and partial paraproducts
in UMD function lattices. This then would imply that all
bi-parameter CZOs are bounded in Lp1Lp2(X ) whenever X is a
UMD function lattice.

For simplicity, however, in these lectures we show the boundedness
of these other bi-parameter model operators only in the
scalar-valued case.
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H1-BMO duality

Let D = D1 ×D2. Below R ∈ D. We will prove that∑
R

|aR ||bR | .
[

sup
Ω

1

|Ω|1/2

( ∑
R⊂Ω

|aR |2
)1/2]

·
∥∥∥(∑

R

|bR |2
1R
|R|

)1/2∥∥∥
L1
.

Given k ∈ Z we define

Uk =
{
x :
(∑

R

|bR |2
1R(x)

|R|

)1/2
> 2−k

}
,

and
R̂k = {R ∈ D : |R ∩ Uk | > |R|/2}.

If R ∈ R̂k , then

R ⊂ Ũk := {x : MD1Uk
> 1/2},

where MDf = supR 1R〈|f |〉R . As MD : L2 → L2, we have
|Ũk | . |Uk |.
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H1-BMO duality

For all R0 ∈ D and for all x ∈ R0 we have(∑
R∈D
|bR |2

1R(x)

|R|

)1/2
≥ |bR0 |
|R0|1/2

.

If bR0 6= 0, then this implies that R0 ⊂ Uk and so R0 ∈ R̂k for all
large enough k.

We may obviously assume∥∥∥(∑
R

|bR |2
1R
|R|

)1/2∥∥∥
L1
<∞.

Then we have |Uk | → 0 when k → −∞, and so we also have that
R0 6∈ R̂k for all small enough k .

Let Rk = R̂k \ R̂k−1, k ∈ Z, and notice that we have deduced
that all relevant R0 (i.e. those for which bR0 6= 0) belong to one
and exactly one Rk .
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H1-BMO duality

∑
R

|aR ||bR | =
∑
k∈Z

∑
R∈Rk

|aR ||bR |

≤ 2

∫ ∑
k∈Z

∑
R∈Rk

|aR ||bR |
1R
|R|

1Ũk
1Uc

k−1

.
∑
k∈Z

∥∥∥( ∑
R⊂Ũk

|aR |2
1R
|R|

)1/2∥∥∥
L2

∥∥∥(∑
R

|bR |2
1R
|R|

)1/2
1Ũk

1Uc
k−1

∥∥∥
L2

.
[

sup
Ω

1

|Ω|1/2

( ∑
R⊂Ω

|aR |2
)1/2]∑

k∈Z
2−k |Uk |

∼
[

sup
Ω

1

|Ω|1/2

( ∑
R⊂Ω

|aR |2
)1/2∥∥∥(∑

R

|bR |2
1R
|R|

)1/2∥∥∥
L1
.

H. Martikainen Shifts and Singular Integrals



Boundedness of Full Paraproducts

It is enough to bound∑
R

|aR |〈|f |〉R |〈g , hR〉|.

The H1-BMO duality bounds this with∫ (∑
R

〈|f |〉2R |〈g , hR〉|2
1R
|R|

)1/2
≤
∫

MDf
(∑

R

|〈g , hR〉|2
1R
|R|

)1/2
.

It remains to use Hölder’s inequality and the boundedness of the
maximal function MD and the square function involving rectangles.
How to see that the latter is bounded? (The mixed-norm
boundedness of the rectangular maximal function takes some
thinking as well, but we omit it for now.)
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Boundedness of the Bi-Parameter Square Function

Let ∆R f = 〈f , hR〉hR = ∆1
I1

∆2
I2
f , if R = I1 × I2 ∈ D and e.g.

∆1
I1
f (x) = ∆I1(f (·, x2))(x1). Then∥∥∥(∑

R

|∆R f |2
)1/2∥∥∥

Lp1Lp2

∼ E
∥∥∥∑

R

εR∆R f
∥∥∥
Lp1Lp2

∼ EE′
∥∥∥∑

I1

εI1∆1
I1

(∑
I2

ε′I2∆2
I2f
)∥∥∥

Lp1Lp2

∼ E′
∥∥∥∑

I2

ε′I2∆2
I2f
∥∥∥
Lp1Lp2

∼ ‖f ‖Lp1Lp2 .

We used Kahane–Khintchine multiple times and the known UMD
space estimates.
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Boundedness of Full Paraproducts

There is a genuinely different full paraproduct as well (the partial
adjoint of the previous one – or the one modeling π1 ⊗ π∗2):∑

R=I1×I2

aR

〈
f ,

1I1
|I1|
⊗ hI2

〉
hI1 ⊗

1I2
|I2|

.

It is bounded by H1-BMO duality as well, but the end is different
reducing e.g. to bounding∥∥∥(∑

I2

|MD1〈f , hI2〉2|
2 ⊗ 1I2
|I2|

)1/2∥∥∥
Lp1Lp2

.

First, remove the maximal function by using that for all
p1, p2, r ∈ (1,∞) we have∥∥∥(∑

j

|M1
D1fj |r

)1/r∥∥∥
Lp1Lp2

.
∥∥∥(∑

j

|fj |r
)1/r∥∥∥

Lp1Lp2
.
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Boundedness of Full Paraproducts

Then we are left with∥∥∥(∑
I2

|〈f , hI2〉2|
2 ⊗ 1I2
|I2|

)1/2∥∥∥
Lp1Lp2

=
∥∥∥(∑

I2

|∆2
I2f |

2
)1/2∥∥∥

Lp1Lp2
,

after which this is just a square function estimate in Lp2 .

We have dealt with all the full paraproducts. It remains to deal
with the last remaining family of model operators – the partial
paraproducts.
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Partiall Paraproducts

A proper generalisation of S1 ⊗ π2 is

Pf =
∑

K=K1×K2∈D

∑
I1,J1∈D1

I
(i1)
1 =J

(j1)
1 =K1

aKI1J1

〈
f , hI1 ⊗

1K2

|K2|

〉
hJ1 ⊗ hK2 ,

where for each fixed K1, I1, J1 we have the one-parameter BMO
estimate

sup
I2∈D2

1

|I2|1/2

( ∑
K2∈D2

K2⊂I2

|aKI1J1 |
2
)1/2

≤ |I1|
1/2|J1|1/2

|K1|
.

We have a choice to try to bound this directly, or to use the
operator-valued theory of shifts again. We could see a bi-parameter
shift as a shift-valued shift, and we can view partial paraproducts
as a paraproduct-valued shift. We use the op-valued approach.
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Partiall Paraproducts

Regarding the mixed-norm bounds, the op-valued approach has a
detail: we can directly do Lp1

x1L
p2
x2 as now the shift structure is in

the x1 variable. Unlike in the bi-parameter shift case where we can,
by symmetry, also do Lp2

x2L
p1
x1 , here there is no symmetry. This

would lead us to study shift-valued paraproducts, but there is no
equally good theory for operator-valued paraproducts as there is
for operator-valued shifts.

For this reason, we really only explictly tackle the Lp1
x1L

p2
x2 case now,

while the other one is also true by modified arguments.

So we write

Pf =
∑

K1∈D1

∑
I1,J1∈D1

I
(i1)
1 =J

(j1)
1 =K1

πK1I1J1〈f , hI1〉hJ1 ,

where
πK1I1J1g =

∑
K2∈D2

aKI1J1〈g〉K2hK2 .
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Partiall Paraproducts

By the OP-valued theory of shifts the partial paraproduct satisfies

‖Pf ‖Lp1Lp2 . C (1 + min(i1, j1))‖f ‖Lp1Lp2 ,

where

C := R

({
|K1|

|I1|1/2|J1|1/2
πK1I1J1 ∈ L(Lp2) : K1 = I

(i1)
1 = J

(j1)
1

})
.

With fixed K1, I1, J1 the coefficients bK2 = |K1|
|I1|1/2|J1|1/2 aKI1J1 satisfy

the natural normalisation

sup
I2∈D2

1

|I2|1/2

( ∑
K2∈D2

K2⊂I2

|bK2 |
2
)1/2

≤ 1.

So the question has reduced to the R-boundedness of a family of
normalised paraproducts – this can be done directly by using
H1-BMO duality, for example. We omit the details.
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